Повышение чувствительности радиоприемника. Коэффициент усиления и чувствительность Повышение чувствительности радиоприемника

Один приятель спрашивает у другого:
- А почему вот тот, разговаривающий по сотовому человек,
постоянно приседает и снова встает?
- Он волну ловит или снайперов боится.
Анекдот на злобу дня (с)

Введение

Каждому хочется, что бы его сотовый телефон был действительно мобильным. Приятно, если твой аппарат достойно принимает сигнал в любом месте и говорить ты можешь без цифровых захлебываний и прерываний. В конце концов, мобильная связь должна давать такую свободу. Большинство цивилизованных стран имеют 100% покрытие. Это значит, что в любой точке страны вы можете принимать и совершать вызовы. Это своеобразный супремум связи. Для России такая возможность не видна пока даже на горизонте. Земли у нас так много, а людей так мало, что покрывать связью каждый куст оказывается экономически нецелесообразно. Вот и приходится операторам думать, где и как ставить очередную базовую станцию. Разумеется, вероятность того, что оборудование появится в тайге, значительно меньше, чем около крупной автомобильной или железнодорожной дороги. В результате не последним аргументом при покупке сотового телефона становится чувствительность и мощность его принимающего и передающего контуров. Вспоминается заря развития сотовой связи, когда качественные трубки действительно давали мобильность своим пользователям, а обладатели упрощённых решений испытывали проблемы. Сейчас крупные города покрыты очень хорошо, но все равно на память приходят моменты, когда ваш собеседник просит вас подойти к окну или найти место, где связь лучше. Радует одно – с каждым годом количество базовых станций непрерывно растет и территория охвата увеличивается. Процесс этот необратим. Некоторое время назад я посетил удаленный район Тверской области. Там мы столкнулись с ситуацией, когда "навороченные" сотовые телефоны отказывались работать. Сеть то появлялась, то исчезала. Среди нас был счастливый обладатель раритета Siemens S35. Он говорил с любого места. Это явным образом свидетельствовало в пользу того, что все трубки разные и раньше умели делать настоящие боевые мобильники. Все трубки используют различную аппаратную базу и соответственно, качество связи в экстремальных условиях (по низкому уровню сигнала) обеспечивают разное. Время прошло, а тот случай из памяти не дает спокойно спать. Я дал себе зарок следующий сотовый аппарат покупать только при условии, что он будет гарантировать мне качественный прием. Время прошло, а новый мобильник так и не куплен. Сегодняшний материал должен приблизить нас к пониманию проблемы «чувствительности» сотового телефона. Его прочтение не гарантирует вам бесперебойной связи, но разложит по полочкам все технические аспекты, которые напрямую связаны с приемником и передатчиком вашей трубки. Так же вы узнаете, как не попасться на крючок жуликов.

Немного теории

Итак, чтобы перейти к предметному разговору на сегодняшнюю тему, нужно разобраться с константами. Для начала, все ниже написанное применимо для GSM связи. Так как большинство российских пользователей выбирают именно этот стандарт, то мы берем на себя ответственность писать именно для них. Однако при должном уме и недюжинной смекалке вы можете провести аналогии для всех других видов мобильной связи. Где-то высказанное нами будет работать практически без метаморфоз, а иногда придется сойти с протоптанной тропки известного решения. В конце концов ноги растут из одного места. В данном случае из мобильного телефона. Теперь можно смело переходить к базовым теоретическим выкладкам. Любой мобильный телефон имеет в себе передатчик и приемник. Поэтому разговоры в чистом виде о чувствительности сотового телефона в некотором смысле не корректны. Нужно разделять мощность передатчика, реализацию антенны и чувствительность приемника. Разумеется, различные производители используют не совсем идентичные детали или аппаратную базу. Поэтому трубки работают по-разному. Кроме этого, некоторые конструктивные особенности мобильника – геометрия антенны и корпуса, ваше положение в пространстве и внешние факторы сказываются на качестве связи. Однако в этом хаосе есть несколько базовых установок, на которые мы можем опираться. Разумеется, это стандарты для сотовой связи. Они прописаны и подписаны много лет назад. Каждый разработчик обязуется выполнять и свято чтить их, так же как президент страны обещает не нарушать конституцию. В том и другом случае возможны некоторые нарушения, но удовольствия от нарушения никто не получает. Возможны санкции. Президенты в этом случае оказываются защищенными гораздо лучше. Например, решит хитрая азиатская или европейская компания создать мобильный телефон с супер мощной антенной. Казалось бы, и покупатели найдутся, и рекламные лозунги - «Наши антенны вещают так, что вас слышат в ближайшем созвездии» могут надломить психику конкурентов. Но вот продать такие трубки легально не получится. Всевозможные комитеты по стандартам завернут весь бизнес. Такая вот складывается ситуация.

Сотовый телефон существо почти живое. Он всегда пытается пообщаться с базовой станцией. Это происходит вне зависимости от желания владельца. Разумеется, если трубка находится во включенном состоянии. Базовая станция передает сигнал для трубки на частотах 935,2 – 959,8 МГц (важно! Речь идет о GSM900), а мобильный телефон вещает на частотах 890,2 – 914,8 МГц. Суровые математические расчеты говорят о том, что максимально возможное расстояние между сотовым телефоном и базовой станцией может составлять 35 км. Это связано с работой технологии TDMA – каждой мобильной станции выделяется тайм-слот в 0,577 миллисекунд (точнее говоря, работает отношение 15/26), за это время мобильная станция должна успеть ответить соте. Скорость распространения радиоволн конечная и хорошо известная - 300 тысяч км/с, максимальное расстояние вычисляется как простое перемножение времени на скорость. Вот так и получаются эти самые 35 км. Впрочем, если теоретическое вычисленное значение выглядит очень красиво, то в реальности всё обстоит несколько иначе. Для GSM-900 существует 5 классов мощности сотовых аппаратов: 1-й – 20 Вт, 2-й – 8 Вт, 3-й – 5 Вт, 4-й – 2 Вт и 5-й – 0,8 Вт. Реально мы не встречали ни одной носимой трубки с мощностью больше 2 Вт. Пробить расстояние в 35 км при таких характеристиках невозможно. Если увеличить мощность базовой станции достаточно просто – надо установить трансформатор помощнее и договориться с органами надзора, то дать каждому пользователю генератор или кислотный пятидесятикилограммовый аккумулятор за спину не представляется возможным. Против абонента сотовой сети играет буквально всё: погода, рельеф, инфраструктура и многое другое. Так что реальное расстояние, на котором связь возможна в каждом конкретном случае, достигается простым экспериментом с сотовым телефоном. Иными словами, вам дается самый реальный повод достоверно измерить «чувствительность» вашего сотового аппарата в полевых условиях. Помните, что измеренная вами величина будет крепко накрепко привязана к конкретному сотовому телефону и изменчивым погодным условиям. Взять пару трубок на тест в магазине мобильников вам, скорее всего, не позволят. Поэтому имеет смысл только одно действие – будьте наблюдательны. Допустим, вы оказались в зоне не совсем уверенного приема. Поспрашивайте у товарищей, как дела обстоят с их сотовыми переговорами. Такой опыт не является высшей гарантией успеха при покупке. Мы писали ранее, что даже в одной поставке трубки одной марки могут работать по-разному. Даже пайка роботом не может гарантировать абсолютно идентичного соединения проводников, что уж говорить о полупроводниках и однородности антенн.

Вижу, но совсем не слышу!

Наверно вы иногда наблюдали такую картинку на вашем сотовом телефоне, что логотип вашей сети на экране присутствует, а вызовы совершать практически не возможно. Ситуация является вашим спутником в условиях недостаточного сигнала. Некоторая инертность логотипа способна убить в абонентах все человеческое. Иногда картину усугубляет тот факт, что ваш мобильник выпал из сети, а трубка друга продолжает рисовать картинку, которая говорит, что связь на его трубке есть. Давайте разберемся с этим интересным фактом. Оказывается, не все так сложно и просто объяснимо. Итак, обратимся еще раз к работе сотовой сети. Известно, что для автоматического управления и включения трубки в общую организацию необходима информация об уровнях сигналов базовых станций. Каждый телефон с заданным промежутком времени измеряет уровень сигнала от базовой станции. Это делается независимо от того, говорите ли вы по трубке или она находится в режиме ожидания вызова. Для чего это делается? Зачастую трубка «видит» сразу несколько базовых станций (БС). Организация сети строится таким образом, что в один момент времени она может общаться (ваши разговоры проходят) только через одну БС. Мобильник меряет уровень сигнала от разных базовых станций и выбирает ту, которая «видится гораздо четче». Это логично и является базисным вектором работы сети. Сотовый телефон измеряет уровень входного сигнала на частотах, указанных системой. Не обязательно ближайшая сота станет вашей. Иногда вы подключаетесь к территориально более далекой станции, главное с более высоким сигналом. Возможно ли переключить аппарат на другую базовую станции? В обыкновенном режиме работы сотового телефона сделать это не представляется возможным. Если изменить прошивку и разрешить пользователю доступ к аппаратным настройкам, то это возможно.

Идем дальше. Трубка меряет мощность входного сигнала. Разумеется, сделать это без ошибки нельзя. Стандарты GSM предусматривают допустимую ошибку измерения при работе в обычных условиях в 6,3 раза (+/-4 дБ). Для «жестких» условий работы, будь то, например, очень низкая температура, стандарт разрешает сделать погрешность в 15,8 раза (+/-6 дБ). Все эти погрешности реально работают для полностью исправных трубок. Жить без них было бы очень сложно, так как производители мобильников физически не способны обеспечить эталонный замер входящей мощности. После того, как мы узнали о погрешности измерения мощности, остается перейти к конкретному примеру. Допустим, что вы со своей трубкой оказались в месте, где реальный уровень сигнала базовой станции равен -103 дБ. Настройки общей работы сети поставлены таким образом, что они сообщают трубке, что доступ к ней разрешен при уровне измеренного сигнала -105 дБ. Разумеется, тут и вылезают все наши погрешности. Приемник мобильника изготовлен так, что уровень сигнала занижается на 4 дБ. Измеренный трубкой сигнал составит -107 дБ. Итак, полностью рабочая и отвечающая всем стандартам трубка будет сброшена из сети, так как она не имеет права быть включенной в систему. Другой сотовый телефон имеет такую реализацию, что он будет завышать измеренный сигнал на 4 дБ. Он сумеет зарегистрироваться в сети и покажет ее логотип на экране. Скажем больше, что если фактический уровень сигнала для такой трубки будет составлять -108 дБ (по месту, где она находится), то аппарат все равно будет исправно регистрироваться в сети оператора. Вот вам и «чувствительность» сотовых аппаратов. Так что наличие логотипа на экране вашего телефона говорит о регистрации трубки в сети, но не гарантирует нормальной связи. Однако это все равно приятно. Попытка поговорить иногда может быть засчитана за сам вызов. Так что, уважаемые читатели, желаю вам иметь трубку с таким приемником и измерительным трактом, который постоянно будет завышать уровень мощности сигнала от базовой станции. Таким образом, мы полностью разрушили миф о том, что пользователи разных сотовых телефонов могут меряться уровнями сигнала, который отображается на экранах их мобильников. Действительно, такие разговоры ведутся только от глубокой безграмотности в вопросе. Впредь, когда у вас будут спрашивать об уровне сигнала и апеллировать к информации на экране трубки, то не стоит тратить время на пустые разговоры. Смысла нет сравнивать измеренную мощность входящего сигнала, а про «эталонные кубики» совсем стоит забыть. Как этот производитель телефона пересчитывает в них данные остается загадкой. Тратить свое время на ее раскрытие опять же не имеет смысла.

Пляски с сотовым

Любая дуплексная радиостанция, а сотовый телефон является частным случаем этого правила, использует антенну для приема и передачи сигнала. Этот факт является еще одним аргументом эфемерности понятия «чувствительности». Раздельное использование одного и того же элемента трубки влечет некоторый компромисс. Передатчик не должен фонить на приемник, а последний в свою очередь обязан не мешать первому. Все мы живем на планете Земля и полностью отвечаем физическим правилам, которые накладывает на нас природа. Поэтому глупо полагать, что одно электрическое устройство способно не мешать работе другого. В результате разработчики приходят к элементарному компромиссу. Именно он позволяет устройству функционировать так, что вы, абоненты, можете слышать голос своего собеседника в трубке. Кстати, Его Величество Компромисс зачастую делается в пользу приемника. Разумеется, можно было бы создать не дуплексную, а симплексную передачу - в один момент времени только в одну сторону, но такая связь бы не удовлетворила современные запросы пользователей. Бытует мнение, что если прикрыть антенну сотового телефона рукой, то разговоры станут четкими и бесшумными. Давайте разберем эту ситуацию. Действительно, если прикрыть антенну каким-либо предметом, то в подавляющем большинстве случаев уровень измеренного сигнала сотовым телефоном упадет. Мобильный аппарат устроен таким образом, что чем хуже он «слышит» соту, тем «громче» он ей отвечает. Соответственно мощность выходного сигнала будет расти. Его возможности пробивать вашу руку или другой предмет, который загораживает антенну, не безграничны. Кроме этого, базовая станция не будет поднимать мощность, так как она не знает, что пользователь чинит помехи ее сигналу и ее параметры просто не рассчитаны на это. Соответственно, все ваши действия носят больше деструктивный характер, когда вы прикрываете антенну сотового телефона рукой. Кстати, на уровень измеренного входящего сигнала влияет не только рука, но и металлические украшения на ней. При разговоре по мобильному телефону старайтесь держать вашу руку по возможности подальше от антенны. Так и здоровье сбережете и помех лишних не создадите. Отличной помехой для сотовой связи становятся железобетонные конструкции. Помните, чем короче волна, тем лучше она пронизывает их. Кстати, этим обусловлен (и не только этим) тот факт, что в центре города операторы любят использовать 1800 МГц диапазон. За городом в условиях плохой связи старайтесь подняться на всевозможные пригорки. Это действие убирает лишние физические помехи на пути электромагнитных волн от сотового телефона к базовой станции. Помните, что в диапазонах частот, используемых в сотовой связи, даже при небольшом, всего несколько сантиметров, или десятков сантиметров, перемещении антенны, или с течением времени, уровень сигнала может изменяться в 100 и даже в 1000 раз (на 20 – 30 дБ). Обязательно двигайтесь и ищите «удачные» места. Настал момент поговорить на самую темную тему мобильной связи – внешние и внутренние антенны. Трудно перечесть все байки и споры на эту тему. Речь пойдет только о штатных антеннах. Или тех, что уже установлены в ваших мобильных телефонах. Разумеется, дополнительные (выносные) антенны с бустерами, которые вы можете приобрести за отдельные деньги, существенно улучшают прием и передачу, но о мобильности приходиться забыть. Кстати, такие решения очень нравятся автолюбителям, так как таскать на себе их не приходится. Итак, внутренняя или внешняя антенна? Однозначного решения этой задачи нет. Если вы умеете решать волновые уравнения и проставлять граничные условия, то, получив истинные параметры вашего мобильника, вы сможете на компьютере моделировать ситуацию звонка в самых различных точках зоны покрытия. Несколько лет назад один американец поместил в сеть результаты своих расчетов. Они вызвали долгие споры. В результате он убрал их. А жаль, так как это единственный пример подобных расчетов. Опыт показывает, что современные встроенные антенны ничем не уступают внешним решениям. Жизнь существенно осложняют всевозможные доморощенные украшения, которые пользователи вещают на антенну. В результате антенна может работать в нештатном режиме и, может быть, даже навредить вашему здоровью, излучая преимущественно в сторону вашей головы.

Extended Cell

Однако не всегда оператор может ставить обыкновенные базовые станции для покрытия больших территорий. Представьте, например, пустынный или водный район. Экономически, а иногда и чисто физически разместить нужное количество БС просто не получается. Для GSM стандарта предусмотрена конфигурация соты, при которой дальность связи увеличивается до 70 км. Она называется Extended cell. При таком использовании оборудования количество разговорных каналов уменьшается до 3. Но оператор покрывает гигантские площади силами только одной станции.

Не так давно рядом с Санкт-Петербургом на Финском заливе один из операторов использовал Extended Cell. Абоненты могли видеть на экране своих мобильников название этого оператора с восклицательным знаком. Это означало, что трубка видела сеть, но не могла с ней общаться. Проблема решалась с использованием внешних направленных антенн, когда выходной сигнал аппарата усиливался. Таким образом, Extended Cell позволяет покрыть гигантские малолюдные территории. Впрочем, их применение находит все меньшую популярность. В Сибири такие соты не поставишь все равно, а курортные районы по своей сотовой нагрузке давно переплюнули центры мегаполисов по интенсивности телефонных переговоров. Extended Cell физически не могут обслужить такие места, да и требование дополнительной антенны не делают этому способу связи должной популярности.

Внимание, жулики

Каждому пользователю хотелось бы повысить «чувствительность» свого сотового аппарата. Злоумышленники готовы использовать это в своих планах по одурачиванию абонентов мобильных сетей. Легче всего обмануть человека, предоставив ему услугу, которую сложно проверить. А если ее стоимость окажется мала, то это просто клад для жулика. В результате на рынке появились «наклейки-усилители чувствительности для мобильных телефонов». Разумеется, они подходят ко всем типам трубок, реализуют их через интернет и стоят они смешных денег. Производитель этого продукта заявляет, что наклейка работает исключительно по законам физики и придает вашему телефону небывалую чувствительность. Складывается впечатление, что стикеры, заговоренные колдунами и оболваненные бубном, продавались бы тоже достаточно неплохо, но мошенники решили сыграть на серости толпы и массовости рынка. Чудотворные наклейки до сегодняшнего дня с огромным успехом продаются в интернете.

Создатели наклейки рекомендуют наклеить ее под аккумулятор. Логичный ход. Там наклейка не будет мешать и не помешает работать настоящей антенне. Кстати, на расчеты последней уходят огромные силы. Каждая антенна по-своему уникальна и общей панацеи для всего этого многообразия быть не может. Мошенники могут только расстроить работу вашей штатной антенны. Возможно, внести помехи и шумы. Сомнительно так же рекламное утверждение, что один стикер заменяет антенну длинной в метр. Необходимости в такой длине просто быть не может. Конечно, можно собрать метровую антенну, но это будет очень сложная и не очень нужная система. Одним словом, дурят нашего брата. Кстати, ноги у этой наклейки растут из Азии. Там действительно одно время продавали сотовые телефоны и специальные антенны в виде наклеек к ним. Однако от системы отказались, так как пользователи просто не могли их правильно наклеить. Важно было точно позиционировать стикер в нужной части мобильника. Задача оказалась непосильной. Так что не стоит тратить свои деньги и поощрять мошенников.

Заключительное слово

Сегодня мы разобрались с понятием «чувствительности» сотового телефона. Вывод можно сделать один. Чем ваша трубка качественнее собрана и чем лучше элементная база, тем проще вам будет говорить в зонах слабого приема. Если у вас есть возможность использовать выносные антенны с узкой диаграммой направленности, то попробуйте их в работе. Они действительно помогают иногда решить сложные ситуации со связью. Будем надеется, что через некоторое время сотовые операторы покроют весь Земной шарик и мы забудем об этой проблеме. Оставайтесь на связи!

Министерство высшего и среднего специального образования РФ.

Балтийский государственный технический университет

«ВОЕНМЕХ» имени Д.Ф. Устинова

Исследование супергетеродинного приёмника

Методические указания к лабораторной работе по курсу

"Радиоприемные устройства"

Санкт-Петербург

Цель работы - ознакомление с основными качественными показателями и методикой измерения основных электрических параметров радиоприемников.

1. Основные качественные показатели радиоприемников

Основными качественными показателями приемников является : чувствительность, помехоустойчивость, коэффициент передачи (усиления), амллитудно-частотная и фазочастотная характеристики, избирательность, перекрытие диапазона частот, нелинейные искажения, вносимые приемникомв принимаемые сигналы, амплитудная характеристика, динамический диапазон, переходная характеристика, выходные данные приемника, устойчивость работы приемника и др.

Чувствительностью приемника называется его способность обеспечивать нормальный прием малых э.д.с. (или мощности сигнала в антенне). Различают пороговую и реальную чувствительность приемника.

Пороговая чувствительность характеризуется величиной э.д.с. или мощности сигнала в антенне, при которой на выходе линейного тракта приемника (т.е. на входе детектора) обеспечивается отношением мощности сигнала к мощности собственных шумов (выходное превышение), равное единице.

Реальная чувствительность определяется величиной э.д.с, или мощности сигнала в антенне, при которое на выходе линейного тракта приемника достигается выходное превышение, требуемое длянормальной работы оконечного устройства. Реальная чувствительность связана с пороговой Р n простым соотношением Р р =D Р n где D - коэффициент различимости. Изменяющийся в широких пределах (от 0.01 до 10) и зависящий как от информативности принимаемых сигналов, так и от структуры оконечных устройств др. Помехоустойчивостью приемника называется его способность противостоять вредному действие помех, обеспечивая при наличии последних прием переданных сообщений с заданной достоверностью при заданном, способе передачи. Поскольку достоверность принятых сообщений обычно возрастает по мере роста превышения на выходе приемника, помехоустойчивость последнего как отдельного звена соответствующей радиотехнической системы удобно выражать относительным увеличением его выходного превышения hвых по сравнению с входным hвых

Оно объективно и достаточно просто характеризует как, эффективность всех селектирующих средств приемника, так и его способность противостоять вредному воздействию помех.

Коэффициентом передачи (усиления) приемника К называется отношение амплитуды выходного напряжения U m вых к амплитуде гармонически изменяемого во времени информативного параметравходного сигнала приемника М (Ω):

К=U m вых /М(Ω).

Частопользуются понятием комплексного коэффициента передачи приемника, равного отношению комплексных амплитуд напряжения на выходе приемника и информативного параметра входною сигнала

К(Ω)= U m вых /M(Ω)-K(Ω)e jφ (Ω)

где К(ω) - модуль комплексного коэффициента передачи приемника; φ(Ω)- фазовый сдвиг на частоте модуляции Ω= 2π F , вносимый приемным трактом в соответствующую компоненту сигнальной модулирющей функции.

Амплитудно-частотной характеристикой приемника называетсязависимость модуля коэффициента передачи K (F ) от частотымодуляции F=Ω/(2π) при принятом коэффициенте модуляции входного сигнала и точной настройке линейного тракта приемника в резонанс с центральной частотой спектра входного сигнала.

По амплитудно-частотной характеристике приемника можно судить о степени частотных искажений, вносимых приемником в спектральные составляющие модуляционных частот принимаемого сигнала, а также определить рабочий диапазон модуляционных частотприемника, ограничиваемый соответственнонижней F н и верхней F в, модуляционными частотами (рис.1,а). Выбор последних определяется спектральным составом принимаемых сигналов.

Фазочастотная характеристика приемника - это зависимостьугла сдвига фаз φ выходного напряжения приемника и модулирующей функции входного сигналаот частоты модуляции F сигнала (рис. 1,6). Длятого чтобы, приемник вносил как можно меньшефазовых искажений в принимаемый сигнал, его фазочастотная характеристика в пределах рабочего диапазона модуляционных частот должна в возможно меньшей мере отклоняться от прямой линии.

Избирательностью приемника называется егоспособность выделять п ринимаемый

сигнал из смеси его с помехами на выходе приемной антенны.

Для количественной характеристики частотной избирательности чаще всего о используют нормированную амплитудно-частотную характеристику (рис.2), линейного трактаприемника, представляющую зависимость y (f ) отношения модуля коэффициента передачи линейного трактана любой частоте К(f ) кего резонансному коэффициенту передачи К о от частотыf немодулированного входного сигнала приемника.

При этомв качествемеры частотнойизбирательности можно принять коэффициент прямоугольности амплитудно-частотной характеристики линейного тракта приемника:

к П =П 0,1 /П 0,7

где П 0,1 и П 0,7 - полосы пропускания линейного тракта приемника, измеренные по уровням 0.707 и 0,1 соответственно.

Перекрытие диапазона частот - способность приемника производить прием радиосигналов,несущие частоты которых лежат в пределах заданного интервала частот, ограниченного граничными частотами f min и f max . Перекрытие диапазона

частот можно характеризовать коэффициентом диапазона K 1 = f max / f min

Амплитудная характеристика приемника амплитудно-модулированных

сигналов - это зависимость амплитуды первой гармоники выходного напряжения U m вых от амплитуды огибающей входного сигнала U m вх при его гармонической модуляции.

По амплитудной характеристике приемника АМ- сигналов (рис.3) удобно определять динамический диапазон амплитуд входного сигнала

D A = U вх max / U вх min

при которых сохраняется линейный режим работы приемника, а также максимальный уровень входного сигнала U вх max превышение которого вызывает появление нелинейных искажений в выходном сигнале приемника. Нелинейные искажения принимаемого сигнала возникают из-за нелинейности проходных характеристик усилительных элементов и других приборов, используемых в приемнике. При гармоническом модулирующем входном сигнале эти искажения вызывают обогащение спектра выходного напряжения приемника высшими гармониками основной частоты модуляции F.

Для количественной оценки нелинейных искажений используют коэффициент" нелинейных искажений

К Н =

где U 1 ,U 2 ,…,U n - эффективные значения первой и высших гармоник основной частоты

модуляции F в спектре выходного напряжения приемника.

Переходной характеристикой приемника называется график реакции его на

входной сигнал, представляющий собой высокочастотное колебание, модулированное единичной функцией (функцией включения). Большое значение переходная характеристика имеет для приемников импульсных радиотехнических систем. По ней могут быть определены (рис.4) время установления τ y - время изменения выходного напряжения от 10 до 90% установившейся величины; время запаздывания τ о - временной интервал от момента, включения модулирующего напряжения

до момента, когда выходное напряжение достигает половины установившейся величины; величина выбросов - отношение максимального отклонения выходного напряжения от установившейся величины.

Определение параметров переходной характеристики приемника поясняется рис.4.

Следует отметить, что время установления, характеризующее инерционность приемника, связано с его верхней граничной частотой F в определяемой по амплитудно-частотной характеристике приемника приближенным соотношением

τ у = (0,45 - 0,5)/F в

которое часто используется при расчете импульсных радиоприемников.

Выходные данные приемника регламентируют величину выходной мощности или выходного напряжения приемника.

Выходной мощностью приемника называется мощность, подводимая к оконечному устройству с токовым управлением (громкоговоритель, рулевая машинка, автопилот и т.п.). Ее величина определяется целевым, назначением приемника и конкретным типом оконечного устройства. При использовании оконечных устройств с бестоковым управлением, (электронно-лучевые трубки, электронные устройства на полевых транзисторах и электронных лампах и т.п.) вместо выходной мощности задают выходное напряжение (в телевизионных приемниках - 20 - 30 В. в радиолокационных приемниках с яркостной индикацией - 20 - 30 В. с индикацией отклонением - 40-80 В).

ПОВЫШЕНИЕ ЧУВСТВИТЕЛЬНОСТИ РАДИОПРИЕМНИКА

Чувствительность простого радиоприемника можно существенно повысить при помощи нескольких способов. Рассмотрим три из них:

Казалось бы - чего проще - добавляй дополнительные каскады усиления... Но на практике простое добавление усилительных каскадов приводит к нестабильной работе усилителя. Чрезмерное усиление приводит к возбуждению усилителя. Практически признано нецелесообразным использование более трех каскадов усиления как в усилителях радиочастоты, так и в низкочастотных усилителях. Можно вывести режим транзистора в диапазон максимального усиления, но такой режим характеризуется сильной зависимостью параметров от уровня входного сигнала, то есть такой усилитель буде неплохо усиливать слабый сигнал, но при увеличении его до некоторого уровня транзистор начнет работать с отсечкой коллекторного тока. Работа транзистора в режиме отсечки приведет к возникновению значительных искажений. На практике, режим транзистора устанавливается на участке с линейной характеристикой усиления (коллекторный ток транзистора выбирается в режиме молчания на уровне 0,5-1 миллиампера), то есть от каскада трудно получить усиление выше 35-40. Двухкаскадный усилитель, таким образом, будет иметь максимальное усиление не более 1600. Использование такого усилителя в простом радиоприемнике не позволит добиться высокой чувствительности приемника в целом. Приблизительно, чувствительность такого радиоприемника (по полю) будет равна 10-15 милливольт на метр. Учитывая низкую эффективность магнитной антенны, такой приемник позволит принимать только мощные радиостанции, удаленные от места приема не более, чем на 150-200 километорв (это замечане справедливо при постройке радиоприемника на длинно или средне волновый диапазоны).


Для увеличения чувствительности радиоприемника в целом можно применить более тщательное согласование всех его каскадов. Один из таких приемов - применение на входе УРЧ Истокового повторителя на полевом транзисторе:

Сам по себе истоковый повторитель не усиливает сигнал (коэффициент усиления - всегда меньше еденицы), но он повышает входное сопротивление УРЧ до нескольких сотен килоом. Как известно, каскад на биполярном транзисторе обладает невысоким входным сопротивлением (до едениц килоом). Если на вход такого усилителя включить колебательный контур - каскад сильно зашунтирует контур, что скажется на его добротности (а, значит - и эффективности!). От добротности контура зависит как чувствительность, так и избирательность (способность принимать только одну радиостанцию) приемника в целом. При низкой добротности резонанс колебательного контура при настройке на работающую радиостанцию будет "расплывчатым". Эта "расплывчатость" приведет к снижению наводимого в контуре напряжения, также при наличии в месте приема нескольких радиостанций - их сигналы будут проникать на вход УРЧ одновременно, что сделает практически невозможным прием радиопередачи какой либо конкретной радиостанции. Для согласования такого каскада с контуром магнитной антенны приходится использовать катушку связи, которая содержит, как правило, в 6-10 раз меньшее количество витков, чем контурная. Применение катушки связи пропорционально уменьшает уровень входного сигнала на входе УРЧ. При использовании на входе усилителя истокового повторителя необходимость в катушке связи отпадает и теперь на вход усилителя поступает уже весь сигнал, наведенный в контуре магнитной антенны принимаемой радиостанцией. На практике применение истокового повторителя реально повышает чувствительность радиоприемника в 5-6 раз, что эквивалентно увеличению дальности приема радиостанций.

Если вы испытывете затруднения в приобретении полевого транзистора - можно повысить чувствительность радиоприемника применением эмиттерного повторителя но уже на выходе УРЧ:

Эмиттерный повторитель, так же, как и истоковый, имеет усиление по напряжению меньше еденицы. В данной схеме повышение чувствительности достигнуто применением на выходе усилителя автотрансформатора L1. Автотрансформатор наматывается на ферритовом кольце типоразмеров К8-К10 (наружный диаметр) и содержит 50+250 витков, провода ПЭВ-0,1. Дальнейшему увеличению усиления способствует применение для детектирования сигнала схемы с удвоением напряжения на диодах VD1,VD2. Реально данная схема увеличивает чувствительность радиоприемника в 3-4 раза.

Коэффициент передачи диодного детектора при однополупериодном выпрямлении обычно равен 0,3-0,5. Детектор с удвоением напряжения имеет коэффициент передачи в 1,4 раза больше, чем однополупериодный. Остальное напряжение бесцельно теряется на переходах диодов. Третий из рассматриваемых нами способов повышения чувствительности приемника - это применение так называемого транзисторного детектора. Детектор на транзисторе дополнительно усиливает низкочастотное полезное напряжение радиопередачи. Коэффициент усиления детектора на транзисторе может достигать 80-100, что эквивалентно общему повышению усиления радиоприемника. Такое повышение может служить поводом для возбуждения усилителя, поэтому в данном случае желательно использовать систему Автоматической Регулировки Усиления (сокращенно - АРУ). Суть АРУ заключается в автоматическом снижении усиления усилителя при высоком уровне входного сигнала.

Практическая схема транзисторного детектора приведена ниже:

Транзистор работает на нелинейном участке характеристики. Рабочий режим транзистора задается при помощи диода. При увеличении входного сигнала напряжение на коллекторе пропорционально уменьшается. Это напряжение можно использовать для установки рабочих точек транзисторов усилителя РЧ. Напряжение АРУ подается на базы транзисторов УРЧ через простейшие развязывающие RC цепочки. Для большинства случаев бывает достаточно применить АРУ только в первом (входном) каскаде УРЧ.

Примерная схема фильтра приведена ниже:

Номинал резисторов R1 и R2 зависит от необходимого уровня смещения на базу транзистора и подбирается к конкретному экземпляру. Емкость конденсатора может колебаться от 0,033 до 0,1 микрофарады.

Наиболее простой задачей является прием местных станций, сигналы которых достаточно сильны, так что даже простой малоламповый приемник может принять и воспроизвести их с большой громкостью. Значительно труднее принять передачи удаленных радиостанций, от которых к месту приема доходят иногда очень слабые сигналы. Тогда нужен более сложный приемник.

Способность принимать слабые сигналы характеризуется параметрам, называемым чувствительностью приемника . Чем слабее сигналы принимаемой станции, тем более чувствительным должен быть приемник, чтобы принять их.

Чувствительность приемника оценивается тем напряжением сигнала на его входе, при котором на выходе приемника получается установленная для него мощность. Чем меньше требуемое для этого напряжение сигнала, тем чувствительнее приемник. Но напряжение на вход приемника поступает из антенны, в которой приходящими от радиостанций сигналами возбуждается электродвижущая сила (э. д. с.). Естественно, что подаваемое антенной на вход приемника напряжение несколько меньше этой э. д. с., так как часть э. д. с. расходуется в самой антенне (это аналогично тому, что напряжение гальванической батареи, отдаваемое во внешнюю цепь, оказывается всегда меньше э. д. с., развиваемой этой батареей). Поэтому под чувствительностью приемника надо понимать ту величину э. д. с. в антенне, при которой на его выходе получается установленная для него мощность .

Чувствительность измеряется в микровольтах (мкв ). Чем меньше микровольт нужно подать на вход приемника для получения требуемой выходной мощности, тем лучше или, как часто говорят, тем выше его чувствительность. Так как поступающее на вход приемника напряжение сигнала усиливается в различных каскадах приемника и, достигнув необходимой величины, попадает на управляющую сетку выходной лампы, то чувствительность приемника определяется общим усилением всех его каскадов. Поэтому приемник тем чувствительнее, чем больше в нем каскадов усиления.

Чувствительность приемника неодинакова в разных точках диапазона. В зависимости от схемы и конструкции она может быть более равномерной или менее равномерной. На фиг. 1 приведена в виде примера диаграмма, характеризующая чувствительность одного из промышленных приемников. По горизонтальной оси отложены частоты (кгц ), на которых производилось измерение, а по вертикальной - чувствительность (мкв ), причем значения чувствительности отложены сверху вниз. Такой метод построения диаграммы делает ее более наглядной (чем выше расположены точки кривой, тем выше чувствительность приемника).

Если схема приемника проработана недостаточно тщательно и налаживание его произведено не совсем правильно, то чувствительность приемника может оказаться очень неравномерной по диапазону, например высокой на высокочастотном конце поддиапазона и резко уменьшившейся на его низкочастотном конце, или наоборот. Подобная неравномерность явилась бы недостатком приемника, так как у хорошего приемника чувствительность в пределах одного поддиапазона, а еще лучше - по всему диапазону принимаемых частот - должна оставаться более или менее постоянной.

По ГОСТ у приемников 1-го масса чувствительность должна быть на всех диапазонах не хуже 50 мкв, у приемников 2-го класса - не хуже 200 мкв на длинных и средних волнах и не хуже 300 мкв на коротких волнах, у приемников 3-го класса сетевых - не хуже 300 мкв на длинных и средних и не хуже 500 мкв на коротких волнах, у батарейных приемников 3-го класса - не хуже 400 мкв на всех диапазонах.

Чувствительностью радиоприемника называется его способность обеспечивать нормальный прием при малой величине ЭДС или мощности сигнала в антенне. Под нормальным приемом понимают такой, при котором обеспечивается установленный режим работы оконечного аппарата.

Чувствительность оценивается минимальной величиной ЭДС или мощности сигнала в антенне, при которой осуществляется нормальный прием, и измеряется в микровольтах или милливаттах. Следовательно, чем меньше ЭДС полезного сигнала в антенне, при котором получается нормальный прием, тем выше чувствительность.

В зависимости от назначения приемника величина чувствительности может быть от десятых долей микровольт до единиц милливольт или в пределах 10 -9 – 10 -19 Вт. Иногда чувствительность выражают в децибелах относительно одного ватта или милливатта.

Получение высокой чувствительности связано в основном с усилительными свойствами приемника и практически может быть реализовано только при условии, что уровень собственных шумов на выходе приемника меньше уровня сигнала.

Величина допустимого превышения уровня сигнала над уровнем шумов устанавливается в зависимости от характера принимаемых сигналов.

Представим структурную схему РПУ в виде рис.7

Антенна представлена в виде эквивалентного генератора с ЭДС Е А, наводимой полем принимаемого сигнала, а внутреннее сопротивление генератора R А равно сумме сопротивлений излучения и потерь антенны. Сам радиоприемник разделен на две части – линейную и нелинейную. В состав линейной части включены все усилительные и избирательные элементы, стоящие до детектора.

Рисунок 7 – Структурная схема РПУ

Линейной эту часть называют потому, что амплитуда сигнала здесь мала и изменение мгновенных значений его происходит в пределах настолько малого участка характеристики, что нелинейность его не проявляется.

В состав нелинейной части входят детектор и усилитель электрического сигнала с его фильтрами. Здесь амплитуда сигнала обычно значительно больше, чем в додетекторной части. Поэтому необходимо учитывать нелинейность характеристик соответствующих элементов.

На выходе приемника включена нагрузка R н, эквивалентная входному сопротивлению воспроизводящего устройства.

Реальная чувствительность оценивается той наименьшей ЭДС сигнала в антенне Е Аор (или мощностью Р сор), при которой обеспечивается нормальная выходная мощность P N при заданном соотношении сигнал/шум на выходе приемника.

Под нормальной выходной мощностью понимают величину, равную 10% номинальной мощности. Иногда оговаривается нормальное напряжение, величина которого соответствует нормальной мощности на заданном сопротивлении нагрузки:

Заданное соотношение сигнал/шум на выходе приемника определяется видом принимаемого сигнала. Для некоторых случаев необходимое соотношение мощности сигнала к мощности шума приведено в таблице 1.

Таблица 1

Иногда соотношение сигнал/шум задается по напряжению.

где U с, U ш, Р с и Р ш – напряжения и мощности сигнала и шума соответственно на выходе радиоприемника.

Реальная чувствительность Е Аор (или Р сор) неудобна для сравнения радиоприемников с различными трактами усиления электрического сигнала и воспроизводящими устройствами. Кроме того, реальная чувствительность зависит от режима работы детектора и от субъективных свойств оператора, воспринимающего сигнал на выходе приемника. Поэтому, введена предельная чувствительность Е Аоп (или Р соп), которая характеризует только линейную часть радиоприемника. Определяется предельная чувствительность наименьшей ЭДС радиосигнала Е Аоп в антенне или мощностью Р соп, при которых на выходе линейной части соотношение сигнал/шум равно единице

Так же, как ЭДС, мощность сигнала в антенне должна быть независимой от нагрузки, характеризовать только источник сигнала.

Номинальная мощность источника ЭДС – максимальная мощность, которую источник может отдать в нагрузку (иногда ее называют располагаемой мощностью, мощностью, которой источник располагает). Номинальная мощность отдается источником в нагрузку при согласовании – равенстве активных составляющих и компенсации реактивных составляющих внутреннего сопротивления источника ЭДС и сопротивления нагрузки.

Определяя мощность, отдаваемую источником ЭДС в нагрузку при R и =R н, легко показать, что номинальная мощность источника .

Следовательно,

При всех других условиях мощность, отдаваемая в нагрузку, будет меньше номинальной.

Использование для оценки чувствительности приемника номинальной мощности сигнала в антенне позволяет учесть не только его усиление от входа приемника до выхода, но влияние того, как мощность от антенны передается ко входу приемника.

Из определения номинальной мощности вытекает и определение коэффициента усиления номинальной мощности К нр – отношение номинальной мощности на выходе приемника (или любого четырехполюсника) к номинальной мощности источника сигнала.

В случае, когда радиосигналы на входе РПУ достаточно большой величины и не требуется большого их усиления, чувствительность приемника ограничивается усилением его линейного тракта.

Для нормального протекания процесса детектирования на вход детектора должен быть подан сигнал определенной амплитуды U mc =U m вх дет. Если известна величина коэффициента усиления линейной части тракта приемника К о, настроенной на частоту ¦ о, равную несущей частоте принимаемого сигнала ¦ с, то наименьшая ЭДС сигнала в антенне, соответствующая чувствительности приемника,

Обычно Е Ао задается в действующих значениях, а U вх дет - в амплитудных. Этим объясняется введение коэффициента в знаменатель формулы.

Понравилось? Лайкни нас на Facebook